Speed of the bacterial flagellar motor near zero load depends on the number of stator units.

نویسندگان

  • Ashley L Nord
  • Yoshiyuki Sowa
  • Bradley C Steel
  • Chien-Jung Lo
  • Richard M Berry
چکیده

The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque-speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque-speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of the bacterial flagellar motor with multiple stators.

The bacterial flagellar motor drives the rotation of flagellar filaments and enables many species of bacteria to swim. Torque is generated by interaction of stator units, anchored to the peptidoglycan cell wall, with the rotor. Recent experiments [Yuan J, Berg HC (2008) Proc Natl Acad Sci USA 105:1182-1185] show that at near-zero load the speed of the motor is independent of the number of stato...

متن کامل

Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units.

Rotation of the bacterial flagellar motor is driven by multiple torque-generating units (stator elements). The torque-generating dynamics can be understood in terms of the "duty ratio" of the stator elements, that is, the fraction of time a stator element engages with the rotor during its mechanochemical cycle. The dependence of the limiting speed (zero-load speed) of the motor on the number of...

متن کامل

Load-Dependent Assembly of the Bacterial Flagellar Motor

UNLABELLED It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the num...

متن کامل

Resurrection of the flagellar rotary motor near zero load.

Flagellated bacteria, such as Escherichia coli, are propelled by helical flagellar filaments, each driven at its base by a reversible rotary motor, powered by a transmembrane proton flux. Torque is generated by the interaction of stator proteins, MotA and MotB, with a rotor protein FliG. The physiology of the motor has been studied extensively in the regime of relatively high load and low speed...

متن کامل

Catch bond drives stator mechanosensitivity in the bacterial flagellar motor

The bacterial flagellar motor (BFM) is the rotary motor that rotates each bacterial flagellum, powering the swimming and swarming of many motile bacteria. The torque is provided by stator units, ion motive force-powered ion channels known to assemble and disassemble dynamically in the BFM. This turnover is mechanosensitive, with the number of engaged units dependent on the viscous load experien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 44  شماره 

صفحات  -

تاریخ انتشار 2017